293 research outputs found

    A Conceptual Cortical Surface Atlas

    Get PDF
    Volumetric, slice-based, 3-D atlases are invaluable tools for understanding complex cortical convolutions. We present a simple scheme to convert a slice-based atlas to a conceptual surface atlas that is easier to visualize and understand. The key idea is to unfold each slice into a one-dimensional vector, and concatenate a succession of these vectors – while maintaining as much spatial contiguity as possible – into a 2-D matrix. We illustrate our methodology using a coronal slice-based atlas of the Rhesus Monkey cortex. The conceptual surface-based atlases provide a useful complement to slice-based atlases for the purposes of indexing and browsing

    A Three-Dimensional Atlas of the Honeybee Neck

    Get PDF
    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy

    An anatomic gene expression atlas of the adult mouse brain

    Get PDF
    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea)

    A large-scale study on the effects of sex on gray matter asymmetry

    Get PDF
    Research on sex-related brain asymmetries has not yielded consistent results. Despite its importance to further understanding of normal brain development and mental disorders, the field remains relatively unexplored. Here we employ a recently developed asymmetry measure, based on the Dice coefficient, to detect sex-related gray matter asymmetries in a sample of 457 healthy participants (266 men and 191 women) obtained from 5 independent databases. Results show that women’s brains are more globally symmetric than men’s (p < 0.001). Although the new measure accounts for asymmetries distributed all over the brain, several specific structures were identified as systematically more symmetric in women, such as the thalamus and the cerebellum, among other structures, some of which are typically involved in language production. These sex-related asymmetry differences may be defined at the neurodevelopmental stage and could be associated with functional and cognitive sex differences, as well as with proneness to develop a mental disorder

    Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson's Disease Progression

    Get PDF
    Background: The objective of this study was to assess neurofilament light chain as a Parkinson’s disease biomarker. Methods: We quantified neurofilament light chain in 2 independent cohorts: (1) longitudinal cerebrospinal fluid samples from the longitudinal de novo Parkinson’s disease cohort and (2) a large longitudinal cohort with serum samples from Parkinson’s disease, other cognate/neurodegenerative disorders, healthy controls, prodromal conditions, and mutation carriers. Results: In the Parkinson’s Progression Marker Initiative cohort, mean baseline serum neurofilament light chain was higher in Parkinson’s disease patients (13 � 7.2 pg/mL) than in controls (12 � 6.7 pg/mL), P = 0.0336. Serum neurofilament light chain increased longitudinally in Parkinson’s disease patients versus controls (P < 0.01). Motor scores were positively associated with neurofilament light chain, whereas some cognitive scores showed a negative association. Conclusions: Neurofilament light chain in serum samples is increased in Parkinson’s disease patients versus healthy controls, increases over time and with age, and correlates with clinical measures of Parkinson’s disease severity. Although the specificity of neurofilament light chain for Parkinson’s disease is low, it is the first blood-based biomarker candidate that could support disease stratification of Parkinson’s disease versus other cognate/neurodegenerative disorders, track clinical progression, and possibly assess responsiveness to neuroprotective treatments. However, use of neurofilament light chain as a biomarker of response to neuroprotective interventions remains to be assessed

    Anatomical Global Spatial Normalization

    Get PDF
    Anatomical global spatial normalization (aGSN) is presented as a method to scale high-resolution brain images to control for variability in brain size without altering the mean size of other brain structures. Two types of mean preserving scaling methods were investigated, “shape preserving” and “shape standardizing”. aGSN was tested by examining 56 brain structures from an adult brain atlas of 40 individuals (LPBA40) before and after normalization, with detailed analyses of cerebral hemispheres, all gyri collectively, cerebellum, brainstem, and left and right caudate, putamen, and hippocampus. Mean sizes of brain structures as measured by volume, distance, and area were preserved and variance reduced for both types of scale factors. An interesting finding was that scale factors derived from each of the ten brain structures were also mean preserving. However, variance was best reduced using whole brain hemispheres as the reference structure, and this reduction was related to its high average correlation with other brain structures. The fractional reduction in variance of structure volumes was directly related to ρ2, the square of the reference-to-structure correlation coefficient. The average reduction in variance in volumes by aGSN with whole brain hemispheres as the reference structure was approximately 32%. An analytical method was provided to directly convert between conventional and aGSN scale factors to support adaptation of aGSN to popular spatial normalization software packages

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Functional and neurometabolic asymmetry in SHR and WKY rats following vasoactive treatments

    Get PDF
    A lateralized distribution of neuropeptidase activities in the frontal cortex of normotensive and hypertensive rats has been described depending on the use of some vasoactive drugs and linked to certain mood disorders. Asymmetrical neuroperipheral connections involving neuropeptidases from the left or right hemisphere and aminopeptidases from the heart or plasma have been suggested to play a role in this asymmetry. We hypothesize that such asymmetries could be extended to the connection between the brain and physiologic parameters and metabolic factors from plasma and urine. To assess this hypothesis, we analyzed the possible correlation between neuropeptidases from the left and right frontal cortex with peripheral parameters in normotensive (Wistar Kyoto [WKY]) rats and hypertensive rats (spontaneously hypertensive rats [SHR]) untreated or treated with vasoactive drugs such as captopril, propranolol and L-nitro-arginine methyl ester. Neuropeptidase activities from the frontal cortex were analyzed fluorometrically using arylamide derivatives as substrates. Physiological parameters and metabolic factors from plasma and urine were determined using routine laboratory techniques. Vasoactive drug treatments differentially modified the asymmetrical neuroperipheral pattern by changing the predominance of the correlations between peripheral parameters and central neuropeptidase activities of the left and right frontal cortex. The response pattern also differed between SHR and WKY rats. These results support an asymmetric integrative function of the organism and suggest the possibility of a different neurometabolic response coupled to particular mood disorders, depending on the selected vasoactive drug.This work was supported by the Ministry of Science and Innovation through project no. SAF 2008 04685 C02 01
    corecore